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Vector Correlation Analysis for Inelastic and Reactive Collisions between Partners
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A general reactive collision of the type A + B — C + D is considered where both the collision partners (A
and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta.
Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum
anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant
angular momentum. The angular momentum distribution of the product is expressed in terms of canonical
spherical tensors multiplied by anisotropy-transforming coefficients ¢£, (K,,L). These coefficients act as
transformation coefficients between the angular momentum anisotropy of the reactants and that of the product.
They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship
between the coefficients ¢, (K;.L) and the body-fixed scattering S matrix is given and the methodology for
the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The
anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to
vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the
use of projections of both reactant and product angular momenta onto the product recoil vector direction. An
important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant
angular momentum distribution has a projection g, onto the product recoil vector the state multipoles for the
product angular momentum distribution all have this same projection. Expressions are also presented for the
distribution of the product angular momentum when its components are evaluated relative to the space-fixed

Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.

I. Introduction

Stimulated by the pioneering works of Fano and Macek' and
of Herschbach and co-workers,>? the field of stereodynamics
and vector correlation in inelastic and reactive molecular
collisions dynamics has attracted much attention over recent
decades. This has resulted in a very large number of publica-
tions; see refs 4—29 and references therein. The importance of
vector properties in molecular collision dynamics is a conse-
quence of the fact that practically all interactions within a
reaction or collision complex are intrinsically anisotropic and
this fact often results in electronic or rotational anisotropy in
the reaction products. The form and degree of this anisotropy
will normally depend on the direction of scattering; i.e., there
will be a correlation between the product recoil vector and the
direction of the electronic or rotational angular momentum.

Several different theoretical approaches have been proposed
and used in recent years to study the stereodynamical effects
discussed above. Some of them** 3 are based on a semiclassical
bipolar moment expansion formalism proposed originally by
Dixon* for the description of vector correlations in molecular
photodissociation. Another approach suggested by Shafer, Orr-
Ewing, and Zare?'**35 employs a spherical harmonic expansion
of the angular momentum distribution in terms of polarization
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dependent differential cross sections in the center-of-mass
reference frame. The quantum mechanical methods using density
matrix techniques have been developed by Case and Hersch-
bach? and by de Miranda and Clary.?

In this paper we consider a general bimolecular reaction of
the form:

A(p) t B(g) — C(jo) + D(jp) (D

where both the reactants and the products may possess polarized
internal angular momenta, such as spin, electronic orbital, or
rotational angular momentum. Clearly eq 1 includes the pos-
sibility of an inelastic nonreactive collision as well. The work
described in the present paper presents an alternative treatment
to that given by de Miranda and Clary***” and introduces to
the field of reactive scattering anisotropy-transforming coef-
ficients similar to those already in use in molecular photodisso-
ciation.*%3

A density matrix formulation** combined with a spherical
tensor analysis*'*? is used to describe the polarization of the
reactants. The scattering process is treated quantum mechanically
and an explicit relationship is derived between the initial-reagent
polarization and final scattering angle dependent product
polarizations. Both the initial polarization and the final scattering
angle dependent product polarizations are described using
spherical tensors and state multipoles.**4!
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We present universally valid expressions for the recoil-angle
distribution of the state multipole moments for the polarization
of one of the products (C) averaged over the quantum states of
the other product (D). The most transparent form of the
expressions in obtained for the case where the projection axis
for the components of the product angular momentum is taken
to be the product recoil direction. Expressions are also presented
for the case when components of the product angular momentum
is referred to space-fixed laboratory axes and simple relation-
ships are presented connecting the two cases.

The scattering angle dependent product angular momentum
distribution is written in terms of an expansion over spherical
tensors made up from a convolution of standard angular
functions and the state multipole of the reactant angular
momentum polarization density matrix. The angle-independent
coefficients in this expansion, c’,?iqk(Kr,L), contain all the dynami-
cal information associated with the scattering process. We derive
expressions for these anisotropy-transforming coefficients in
terms of standard scattering S matrices. Our analysis exposes a
new conservation law, namely that the component ¢, of the
product state multipole of rank K referred to the product recoil
vector is conserved in the expansion over the spherical tensors
created from a convolution of the reactant state multipole and
spherical harmonics of the angle of the initial relative momentum
vector of the approach of the two collision partners with respect
to the product recoil direction. Stated differently, the projection
quantum numbers g, are constant throughout and the summa-
tions involved in the expansion are only over the associated
rank, K; of the spherical tensor.

We also present expressions for state multipoles of the product
angular momentum polarization density matrix referred to space-
fixed axes. Standard experimental techniques, widely used in
photodissociation experiments,*’ can be used to determine the
coefficients in this expansion. The expansion itself involves
summations over more quantum numbers than the expansion
referred to the product recoil direction, but interestingly, the
expansion coefficients remain exactly the same but are now
multiplied by two standard angular functions.

Several important specific cases of the product polarization
distribution are discussed. In particular, reaction between
unpolarized particles A and B; reaction between polarized
reactants under bulk conditions and the general case of reaction
between polarized reactants in a crossed molecular beam
apparatus.

Section II presents the general theory, a discussion of the
equations and of some special cases is given in section III and
some conclusions are given in section IV. Appendices A and B
present some details of the derivation of the formulas presented
in the paper. An extended detailed derivation of all the formulas
in the paper is available in the Supporting Information.

II. General Theory

We consider an inelastic, or a reactive collision of the form
of eq 1, where the total “internal” angular momenta of the
collision partners or products are ja, jg, jo, and jp and the
quantum numbers for their projections onto the laboratory Z-axis
are mp, mg, mc, and mp, respectively. The angular momenta
may arise from nuclear motion, i.e., rotation, or may be
electronic in origin, i.e., spin or orbital electonic angular
momentum. The total internal reagent and product angular
momenta are j. = ja + jg and j = jc + jp, respectively.

In the asymptotic region, the scattering wave function in the
center of mass reference frame, W, (E k.k), obeys boundary
conditions corresponding to an incident plane wave for the
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Figure 1. Coordinate reference frames used: (i) X, Y, Z is the laboratory
frame, (ii) the Euler angles ¢, 6, & describe the product reference frame
where the z-axis is parallel to the recoil wave vector K, (iii) the Euler
angles ¢, ¥, y describe the reactant reference frame where the z’-axis
is parallel to the incident relative wave vector of the reactants k;, (iv)
the angles ¢y, ¥ describe the direction of the reactant relative wave
vector k; in the product frame.

relative motion and an internal quantum state In,) in the reactant
channel and outgoing spherical waves in all product channels
associated with internal quantum states ln).*~48

ikR

R—oo .
W, (B M Rin + D fn’nA(E,kr,k)%ln) 2)

where K, and k are the wave vectors for relative motion in the
reactant and product channels respectively, E is the total energy,
k = kP = [2u(E — E,)]"?, u, and u are the corresponding
reduced masses, n, and n are the sets of all quantum number
describing the reagent and product states, and R is the
interparticle distance before and after the reaction.

In the helicity representation n, = vy, j,, Q; and n = v, j, Q,
where Q, and Q are the projections of the total internal angular
momenta j, and j onto the directions k; and K, respectively. The
indices v, and v are the sets of all additional quantum numbers
that depend on the details of the structure of the reactants and
products.

The coordinate reference frames used in this paper are shown
in Figure 1. The Euler angles (¢,9,y) specify the reactant
reference frame (z’-axis is parallel to the vector k;), the Euler
angles (¢,0,8) specify the product reference frame (z-axis is
parallel to the vector k) with respect to the laboratory frame
XYZ. The polar angles (g,0;) specify the direction of the
reactant relative wave vector, k;, in the product reference frame.

The scattering wave function W, (E k. K) in eq 2 depends on
two vectors, k; and k, and can be expanded at all internuclear
distances R over products of Wigner D matrices.*”** In the total
angular momentum representation the scattering amplitude
Juiewe(K-K) in eq 2 can be written as (see Appendix A):
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fva;U.jQ(kr’k) =
N @7 + DD (9.9.7) Dl (@.0.5T 0.,
2\jk§‘jk§jD o ua Py s
(3)

where J and M are the quantum numbers for the total angular
momentum and its projection onto the laboratory frame Z-axis,
D,{mr(gu,z?,y) is a Wigner D matrix, and ijjg;l,‘,_,-rgr is the scattering
T matrix in the total angular momentum representation. The
dependence of the scattering amplitude on E in eq 3 has been
dropped for brevity.

For a reactive collision, where the nature of the collision
partners is changed by the scattering process, the boundary
conditions for the scattering wave function in eq 2 should be
modified because the inter-reagent distance R in the first term
differs in this case from the interproduct distance R’ in the
second term.* The scattering amplitude, Juiawo(k.K), however,
may always be correctly expressed as an expansion over
products of two Wigner D matrices as shown in eq 3.

The differential reactive cross section is given by

ﬂrk
kAB Ifz/jQ v ]rQ (kr?k)l (4)

T

O—UjQ,UrjIQr(kr’k) =

In keeping with past approaches, we can define a generalized
cross section as

0 vj'Q Qs v i, U]Q(kr’k)

kC.DkCD 172
(’ﬁ) UK o (KoK) (5)
u kABkAB 1jQ;0,j RN vj'Q 0 RN

Vg UL

The generalized differential cross section in eq 5 describes
the probability of detecting the reaction products C and D in
their coherent quantum states n, n” arising from a coherent
distribution of reactant states n,, n;, including all coincidence
effects.** We have been careful to define the generalized cross
section so that primed and unprimed variables appear in a
symmetric manner. The “diagonal” terms of the generalized
cross section (0,0 4 0:0,j, 2,42, (KrK)) yield, as expected, the
standard differential cross section of eq 4.

The total reagent angular momentum j, may be polarized.
This means that its magnetic sublevels, labeled by m, in the
space-fixed coordinate system, may be unequally populated. We
will describe this polarization using the laboratory frame reagent
density matrix,** py,.; ., where in general ji # j, and m; =
m,. In the present paper we will not consider the correlation
between different j, rotational levels of the reactants and
therefore assume that j. = ji. Though the j, ji coherence may
become important if, for instance, the initial reagent polarization
is produced by a short laser pulse. The reaction cross section
resulting from an initially polarized state of the reactants is
obtained by averaging of the generalized reaction cross section
in eq 5 over the reagent quantum numbers m,, m; as follows:

Oufi’Q’,UjQ(kr’k) = Z pj,mrj,mr'oz/_’/"Q’,UjQ;zzrj,m{,Z/rjrmr(kr’k)

my,mf

(6)
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Note that the cross section in the right-hand side of eq 6 has
been partially transformed from the reactant coordinate helicity
representation in which the angular momentum projections are
taken onto the vector k; in Figure 1 and are denoted by Q, to
a space-fixed representation. This transformation involves two
Wigner D matrices and the associated summations. Full details
of the transformation are given in the notes deposited as
Supporting Information.

In this paper we use the irreducible representation of the
density matrix and express the elements of the reagent density
matrix in terms of the covariant state multipole moments p
which are defined as*

) — ey 172 jr jr Kr
ity = 2 1K+ 1) (mr —m! —Qr)Pj,m;m,

(7

where K, and Q, are the reagent state multipole rank and its
projection onto the direction of the laboratory Z-axis, respectively.

The experiments often involve the detection of only one of
the reaction products and therefore do not yield simultaneous
vector correlation information concerning both of them. The
corresponding cross section involves averaging over the quantum
numbers of the nondetected reaction product. This averaging is
performed by taking the trace of the generalized cross section
in eq 6 over the quantum numbers vp, jp, and Qp that are not
actually measured:

OQ, Q. k.k) =
(o4 iQ
z 2 2 CJC £ ipRp jchjDQDOU'j'Q',UjQ(kr?k) (8)

vpyp,Qp j,Q" j.Q

where Cicgc ey 18 @ Clebsch—Gordan coefficient and Q¢,Q¢
are projections of the angular momenta jc, jc onto the product
recoil direction k. We have omitted the quantum numbers v
and " from the left-hand side of eq 8 for compactness of
notation.

We assume in eq 8 that the product C is detected in a definite
quantum state characterized by the quantum numbers v¢ and jc
but that the product D is not detected, and we therefore sum

over all its possible states.

Note that only the averaging over the helicity quantum
number Qp in eq 8 is important for the results presented below.
One may skip the summation over the quantum numbers vp
and jp in eq 8 and consider the case when the product D is
detected in a quantum state lvp,jp); however, no information
on the angular momentum polarization of this product is
available.

The diagonal (Q¢ = Qc) elements of the generlaized cross
section O(g’f,g (k..k) give the probability of producing the
reaction product with a specific value of the fragment angular
momenta and its k-component Qc, while the off-diagonal
elements (Qc = Q¢) describe the coherence between these
states. 04!

We now express the elements of the generalized differential
cross section a(g’;,) o, (knK) in terms of state multipole mo-
ments,** which are spherical tensors with the rank K and
projection ¢, onto the product recoil vector k using the
formula:*
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Qe.Qc
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o e K\,
(éc ‘o _qk)o?yc,gc(kr,k) ©)

where the factor in the brackets is a 3j-symbol,*? ¢, =
(2jc + 1)"VXTr[oY9(k,,k)]) is the total reaction cross section
calculated for the case of unpolarized reactants, jijm, =
0j,j¢ Om,m> and the angular brackets indicate integration over
the recoil angles 6,¢. The explicit expression for the total
reaction cross section gy is given in Appendix B, eq B3.

The product state multipole rank, K, in eq 9 is an integer
number and ranges in the interval 0 < K < 2jc. The quantum
number for its projection, g, on the product recoil vector takes
on values over the range —K =< ¢; < K. Due to the symmetry
properties of the 3j-symbol, the projection gy is equal to g =
Qc — Qc.

The state multipole moments p(lc)(kr,k) in eq 9 have clear
physical meanings. In particular, thé state multipole moment
with K = ¢, = 0 is proportional to the conventional differential
reaction cross section:

(o) — 1 jc
Pl k) = G5 1)00QZCoJQC,QC(lg,k) (10)

while all multipole moments with K > O refer to the product
angular momentum distribution.

In the product recoil frame used in eq 9, the z-axis is parallel
to the product recoil wave vector k. It can be shown® that the
qr = 0 component of the state multipole moment p%) with rank
K is proportional to the mean value of the Kth power of the
z-component of the angular momentum jc. In particular for K
=1,2,

p(lc) — ( 3
O Vel + D@jc + D

12
) Goy  an

(o) —
P20

5
(jc(ic + D@jec = D@je +

12
Y6002 = i
(12)

DQje + 3))

Equations 11 and 12 refer to the angular momentum distribu-
tions which are axially symmetric with respect to the z-axis. In
contrast, the expressions for the g, = 0 components of the state
multipole moment p(’c) contain the mean values of the powers
of the x and y- components of the angular momentum jc and
refer to the angular momentum distributions which are not
axially symmetric with respect to the z-axis.

The equations presented so far, eqs 3 and 5 have been written
in terms of a standard helicity representation in which the
reactant angular momenta are referred to the reactant relative
momentum vector, K;, and the angular momenta of the products
are referred to the product recoil vector k. The principal novel
idea of the ensuing derivation is that all angular momenta
involved in the problem will be referred to the direction of the
product recoil vector k. We call this the product reference (PR)
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frame. The laboratory frame reagent state multipole moment
of eq 7 is expressed in the PR frame as*?

U — i)
,Oqur - Z pKrQrD
Ql'

0.4($:0:9) (13)

where ¢, is the projection of the rank K, onto the direction of
the product recoil wave vector k. As will be shown below, the
angle & in eq 13 can be set to zero without any loss of generality
(see a comment after eq 20).

Starting from eqs 5, 8, and 9 we show in Appendix B (and
in greater detail in notes deposited as Supporting Information)
that the product C state multipole moments can be presented in
the PR frame in the following compact form:

o, = N2 D ek, (Kol) A O (14)

Ki L.K;

where g, (=¢;) is the projection of both the ranks K and K; onto
the product recoil vector k.

All indices in eq 14 have clear physical meaning. In particular,
the rank L is associated with the angular momentum arising
from the relative motion of the reactants, the rank K, is
associated with the polarization of the total angular momentum
of the reactants j;, the rank K; describes the total reagent
anisotropy (arising from the coupling of L and K;; see Appendix
B eq B6), and the rank K describes the polarization of the
product angular momentum jc.

The spherical tensor 7Z£L(9,¢1) in eq 14 with the rank K;
and projection g; describes the initial anisotropy of the particles
A and B before the reaction. It is given as an irreducible product
of the spherical harmonic Y;,(%,q) and the reagent state
multipole moment p(”) in eq 13:

P @) = 2, Cite Vi, Ou@piy,  (15)

q1.9r

where Ciix, is a Clebsch—Gordan coefficient and the spherical
angles (%, @) specify the direction of the wave vector of the
relative motion of the reactants Kk, in the PR reference frame;
see Figure 1.

Using eq 13, the spherical tensor /’K,,L(z?k,gok) in eq 15 can
be written as an explicit function of two pairs of the polar angles
Y @i and 0, ¢. As can be shown, the tensors ZEL(9, @) are
orthogonal as a function of the polar angles (¢, ¢;) and (0, ¢)
over the indices K;, ¢;, and K;, L. Therefore, the expansion
coefficients c,'qu(Kr,L) in eq 14 are scalar quantities defined as

(e, e
K —1 G Ridi
K (KL)y=N'"—0nc—r— (16)
(A g »

where the double angular brackets signify integration over all
angles.
The proportionality constant N in eq 14 can be chosen as

2j + 1

T

N=——
\4m(2jc + 1)

A7)

providing the normalization conditions: ¢) (0,0) = 1 and {pJc’)
= 1/[2jc + 1]"2. The explicit expresswn for the coefﬁc1ents
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c,’(f.qk(Kr,L) in terms of the quantum scattering matrix is given in
eq B6 of Appendix B.

No simplifying assumptions have been used in derivation of
eqs 14—16 or the equations of Appendix B, they depend only
on the explicit form of the scattering amplitude in eq 3 and on
the symmetry of the spherical tensors under rotation of the
coordinate systems.

Equation 14 makes explicit that the quantum numbers ¢, and
q; are equal to each other. They can take the values ¢, = ¢; =
0, £1, £2, ..., as long as g < IKl and Ig,| < IK}l. From eq 15
we see that g; = ¢, + ¢, arises from a coupling of the reactant
polarization and the relative motion of the reactants. But
the Clebsch—Gordan coefficient CJQK in eq B4 also shows
that ¢, = Q—Q’, where Q and Q’ are hehc1ty quantum numbers
related to the polarization of the products. The quantum number
qx = q; is therefore related to the polarization of both the
reactants and the products and is conserved throughout the
reaction. The conservation of g, shows up through the fact that
the spherical tensors of the rank K in the right and left-hand
sides of eq 14 transform in the same way under rotation about
the vector k (i.e., the z-component of the rank, ¢, is conserved
throughout).

Conservation of the quantum number ¢, is an important new
selection rule which is valid when the differential cross section
is averaged over the helicity quantum numbers €, of the second
(undetected) product, as shown in eq 8. This selection rule
underlies the polarization and coherence effects of the product
angular momentum in inelastic and reactive collisions.*® It is
worth while noting that neither the reagent and product angular
momenta j, and j nor their helicity projections Q, and €2 in eq
3 are in general preserved in the reaction 1.

Transforming the spherical harmonics Y;,(%,¢x) in eq 15 to
the laboratory reference frame:

Y, (0 = QZYLQLw,(p) D ($.0.8)  (18)

using eq 13, and applying the Clebsch—Gordan series,** the state
multipole angular distribution in eq 14 can be written in the
laboratory frame where all angular momenta are projected onto
the laboratory Z-axis (see Figure 1 and Supporting Information):

(o) —
Pko =
N Y, Dk, (K.L)Df (.08 D, (.08 S 0.0)
KiqQ;i LK;

(19)

where the spherical tensor 7£5(9,¢) in the laboratory frame
is given by

S0P = D, Cid o Vi)l (20)

0r,0r

where Q, O;, O, and Q, are projections of the corresponding
ranks onto the laboratory Z-axis. The left-hand side of eq 19
does not in fact depend on the value of the third Euler angle
&, which can therefore be set to zero without any loss of
generality.

Equations 14—20 represent the main result of this paper.
Equation 19 provides a compact and universal expression for
the product recoil angle dependence, in the laboratory reference
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frame, of the polarization of one of the scattered products in an
experiment arising from a general polarized angular momentum
distribution in the reactants. It is completely general and depends
only on the symmetry of the quantum mechanical scattering
amplitude and on the properties of spherical tensors irrespec-
tively of the reaction dynamics. Equations 14 and 19 hold in
general because any solution of the scattering equations can be
presented in the form given in these equations. The equations
are fully quantum mechanical and can be used for the description
of the angular momentum anisotropy arising in elastic, inelastic,
or reactive collisions between atomic, molecular, or nuclear
particles possessing any values of their internal angular mo-
menta, including spin.

The spherical tensor in eq 20 is a direct product of the
laboratory frame spherical harmonic Y;,(%,¢) and the reagent
state multipole moment p(ff) Y 0,(9,¢) describes the anisotropy
caused by the relative m0t10n of the reactants, while p(fr)Q
describes the anisotropy caused by the polarization of the

“internal” reagent angular momentum j,.

The expansion coefficients c,’(f.qk (K,L) in eqs 14 and 19 can
be used as a set of the universal anisotropy transforming
parameters to describe the collisional dynamics. The parameters
do not depend on any angles nor on any experimental details
or methods used. They contain all information about the body-
frame molecular dynamics of the collision or reaction process
and are based on rigorous quantum mechanical theory. The
coefficients c,’((iqk (K,,L) in eq 14 are the elements of a matrix
that performs a transformation between the initial anisotropy
of the reagents, described by the spherical tensor /?qu, and the
anisotropy in the reaction product described by the spherical
tensor p(/c)

The amsotropy transforming coefficients chk(Kr,L) are in
general complex (in the mathematical sense). Using the sym-
metry properties of spherical tensors, we can show from eq 14
that they obey the following relationship:

[ek, (KD = ¢k, (K,.L) 1)

It follows from eq 21 that the coefficients c}((io(Kr,L) are real.

As has recently been shown by Shternin and Vasyutinskii*
who considered the photolysis of an isotropic ensemble of
molecules, the fragment state multipoles in the recoil and
laboratory reference frames can also be represented in forms
similar to those in eqs 14 and 19. In this case K, = 0 and the
spherical harmonics describing the relative motion of the
reaction reagents, Y;,(k,) in eqs 15 and 20, are replaced by
the photon polarization matrix Eg, (e), where e is the
polarization vector of the photolysis light. In the photolysis
case, the number of terms in the expansions (14) and (19) is
always finite, because the photon rank, K, is limited to the
values Ky, = 0, 1, 2.°° Shternin and Vasyutinskii* have
shown that, in the case of photolysis, all the anisotropy
coefficients ¢f -y, are either proportlonal to other commonly
us:e/d anisotropy parameters’' or equal to zero, with c =
—V3.

Applying the Clebsch—Gordan series*! to the product of the
two Wigner D matrices in eq 19, this state multipole angular
distribution can be presented in an alternative form:

Pl = V4N D, Y A + 1)"2P ¢ (L) X

KN LK,

[YA(0.6) ® Z@0.0)p (22)
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where the term in the square brackets is a direct product of the
spherical harmonic Ya,(6,¢) and the spherical tensor 72£5(9.¢)
in eq 20
=X Chik 0, Yar(0:9) 6 (99
2.0i

(23)

[YA(0.6) ® " (0.9)]kq

and PXr(K.L) is the scalar line strength factor which can be
presented in the form:

(r’L) K

quk ( z )

%( ) \/2K+1 0 ~% %
(24)

Pix(K.L) =

The angular distribution in eq 22 is equivalent to eq 19;
however, it is written in a form of an expansion over the
spherical harmonics Y5;(60,¢), rather than of an expansion over
the product of two D-functions in eq 19. In the case of the
expansion in eq 22, the scalar line strength factors P,’\‘K,(Kr,L)
in eq 24 are used as basic expansion coefficients instead of the
anisotropy-transforming parameters c;’{qk(Kr,L).

The application of eqs 14 and 19 to the analysis of product
state polarization distributions in several different experimental
situations is discussed in the next section.

III. Discussion

A. Reaction between Unpolarized Particles. If the reaction
occurs between unpolarized reagents, the reagent total angular
momenta j, are isotropically distributed in space. In this case
the rank K, in eqs 15 and 14 is equal to zero, p{n = pU
1/[2j; + 1]"2, K; = L, and the state multipole moments for the
polarization of the product angular momentum in the PR frame,
p(’d in eq 14, depend only on the direction of the initial relative
reactant wave vector k(@) in the PR frame; see Figure 1.
In this case eq 14 can be written as

1
ek Y, (0.9) (25

\4r(2j. + 1) ¢

PO W@ =

where ¢fy, = ¢f,(0,L) and ¢} = 1.

1. Detection of the Product Distribution. If only the relative
number “°of the reaction product is detected, K = ¢, = 0 and
eq 25 describes the v — v correlations as in the conventional
differential reaction cross section & = (2jc + I)I’Zpgg)((pk,ﬁk):

=2 LY ) = g — > IN2L + 1P (cos B,
L

(26)

As shown in eq 26, the spatial distribution of the reaction
products is cylindrically symmetric when viewed in either the
reactant or the product reference frames and does not depend
on the azimuthal angle ¢,. The distribution in eq 26 is an
expansion over the Legendre polynomials P;(cos 1) of the ranks
L=0,1,2,.... The odd-order terms in this expansion describe
the forward—backward anisotropy of the differential reaction
cross section, while the even-order terms are symmetric with
respect to forward—backward scattering and describe the
alignment of the scattering along this direction. This type of
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distribution of the reaction products have been intensively
studied both experimentally and theoretically.’> The correspond-
ing laboratory frame expression is given by eq 19, where K =
Kr =4k = 4r = 0:

#= L3 ODL (6.00) ¥, (09) =

TTLO;
S o Yy (0.9) Yy (0.9)
(¢
2 L+

where the polar angles (6, ¢) and (99, ¢) specify the directions
k and k; in the laboratory frame; see Figure 1. The number of
the expansion terms in eqs 26 and 27 is in principle infinite;
however, in practice the expansion may be truncated by
neglecting the higher order terms, which become less important
after some value of L. Also, the angular distribution of the
reagent relative velocities k, can often be presented as an
expansion over a finite number of spherical harmonics, resulting
after averaging over the angles ¢, ¥ in eq 27 in a finite number
of the coefficients ) .

In particular, if the reaction reagents are produced in the
photolysis of precursor molecules, the angular distribution of
the relative reagent wave vectors k,(¢}) can be described by the
well-known formula*' f{cos ) ~ 1 + BPy(cos ©). Averaging
of the angular distribution in eq 27 over the f{cos ©) distribution
gives the product angular distribution containing only two terms
(see ref 53 for an early, slightly approximate, derivation):

(fory = —[1 + —Pz(cos 0)] (28)

2. Detection of the Product Angular Momentum Polariza-
tion. If the distribution of the reaction products in definite
(polarized) quantum states is detected, the product state mul-
tipole moments of eq 25 with K > 0 describe the v — j
correlations. The product state multipole moments are in this
case proportional to the polarization-dependent differential
cross sections, OJC (ﬁk,gok) ~ p(fc)(z?k @)% The anisotropy
coefficients ¢/, appearmg in the expansmn of the product state
multipoles (eq 25) provide a convenient measure and codifica-
tion of the product angular momentum anisotropy. The quantum
number L in general ranges from zero to infinity, the rank K
ranges from K = 0 to K = 2j¢, and the projection ¢; ranges
from ¢, = —min(L,K) to ¢, = min(L,K). The terms in eq 25
with odd values of the rank K describe the orientation of the
product angular momentum jc and the terms with even, nonzero
values of the rank K describes the alignment of the product
angular momentum jc.

The symmetry of the state multipole moments pgélfk)(ﬁk,(pk)
distribution in eq 25 is in general determined by two vectors Kk;
and jc and depends strongly on the index g;. If ¢y = Q¢ — Q¢
= 0, which is associated with the noncoherent product angular
momentum distribution, the distribution of the product angular
momentum jc is symmetric with respect to rotation about the
product frame z-axis (the product recoil vector K); see eqs 11
and 12. In these cases, the distribution in eq 25 depends on the
polar angle ¥, between the directions k and k, but does not
depend on the azimuthal angle ¢;. Therefore the g, = 0 state
multipole moments p;(fg(ﬂk,(pk) are always cylindrically sym-
metric about the product recoil vector k.
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When K = 0, ¢x = Qc — Q¢ # 0, there is a coherence
between Q¢ and Q¢ helicity states and the angular momentum
Jjc is not distributed in a manner which is symmetric with respect
to rotation about the product frame z-axis. The product state
multipole, or the polarization dependent differential cross
section,*® in eq 25 depends on both the angles 1% and ¢, and
therefore breaks the cylindrical symmetry about the product
recoil vector k.

Note that the necessary procedures for experimentally mea-
suring each of the two types of state multipole moments
discussed in this subsection are now well developed and
routinely used in photodissociation studies.*®** Analogous
alignment moments have also been measured for rotationally
inelastic scattering.>*

B. Reaction between Polarized Particles in a Bulk Envi-
ronment. If the polarization of the total reagent angular
momentum j, is considered, the rank K, in eqs 15 and 20 differs
from zero, 0 < K, =< 2j. Odd values of the rank K, are
responsible for the orientation and even values of rank K, are
responsible for the alignment of the total reagent angular
momentum J;, respectively.

In this section we consider the reaction in the bulk environ-
ment, when the distribution of the relative reagent wave vectors
k, is isotropic. In this case, the rank L in eqs 15 and 20 is equal
to zero and the product-frame product angular distribution in
eq 14 can be written as

o) = Zcm 000, (29)

The corresponding laboratory-frame distribution which can
be readily obtained from eq 19 is given by

p%‘g(ﬁ ¢) =

2 Zch(

0) D5, *(,0,0) D
\/4ﬂ q;, K LOr qu

04, ($:0:000  (30)

The product state multipole moment distribution in eqs 29
and 30 describes the polarization of the product angular
momentum jc and depends on the polarization of the reactant
angular momentum j,. The rank K ranges from 0 to 2jc, the
rank K, ranges from O to 2j;, and the projection g, ranges from
qr = —min(K,,K) to ¢, = min (K,,K). Thus, the total number of
the terms in the expansions in eqs 29 and 30 is always finite.

Assuming that the initial distribution of the reagent angular
momenta j, is symmetric with respect to the laboratory Z-axis,
we can hold O, = 0 in eq 30. Both Q = 0 and Q # 0
components of the product state multipole moments p(/F)(qb 0)
can differ from zero in eq 30.

The Q = 0 components depend on the polar angle 6 but
do not depend on the azimuthal angle ¢, and therefore they
describe the distribution of the product angular momentum
vectors jc, which possesses cylindrical symmetry with respect
to the direction of the axis Z. Only these components exist
if the number of reaction products, & is detected, K = Q =
0 and eq 29 describes the j — v correlations in the differential
reaction cross section o(0,¢) ~= (2jc + 1)”2pg5>(0,¢).

The Q # 0 components of the product state multipole
moments p(’C)(qf) 0) in eq 30 depend of both polar angles 6
and ¢, and Qherefore they describe the distribution of the
vectors jc which break the cylindrical symmetry about the
axis Z.
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C. Reaction between Polarized Particles in the Crossed
Molecular Beam Conditions. 1. Total Reaction Yield. When
the total reaction yield is detected, eq 19 with K = Q = 0 should
be integrated over the recoil angles 0 and ¢. The polarization
effects in the total cross section in atom—atom inelastic
transitions have been experimentally observed by Leone et
al.'2!3 and Manders et al.'*!> and interpreted through potential-
curve crossing and locking-radius models.'®!” In this case, eq
19 can be presented in the form

0
K, OO(Kr’Kr)

N = 47N —
<P0> ﬂZ( \]ZKr-l-l

(pKrgr) : YKr(ﬁ5(p))
(€29)

where the term in the parentheses is a tensor scalar product:*?

(PG Y00 = D pxo (i) Yig(09)  (32)
Or

As shown in eq 31, the total reaction yield (p!’) depends on
the scalar product of a spherical harmonic dependent on the
direction of reagent relative wave vector Kk, and the state
multipole describing the polarization of the reagent angular
momentum j,. The quantum number K; in eq 31 is limited to K;
= 0,..., 2j;, and therefore the number of coefficients ch(K,,Kr)
= ¢(K}) needed for the complete description of the polarization
effects is in general equal to 2j, + 1. However, in the case when
the reagent angular momentum polarization is prepared by a
one-photon laser excitation, K, = 0, 1, 2 and the number of the
coefficients is equal to 3.

2. Differential Cross Section of the Reaction Products. In
this case, the product polarization rank K and its projections gy
and Q are equal to zero. The zeroth rank PR frame state
multipole moment pJe’ in eq 14 in general depends on the two
vectors K, and j; and its laboratory-frame counterpart in eq 19
depends on the three vectors k;, j;, and k. Experimentally, the
electronic orbital angular momentum alignment dependence of
the reaction differential cross section in cross-beam experiments
have been studied for atom—atom collisions by Visticot et al.'?
and for atom—molecule collisions by Suits et al.'®

In this case ¢; = 0 and ¢, = —¢, in eqs 14 and 15. The terms
with ¢; = ¢, = 0 do not depend on the angle ¢, and refer to the
product distribution, which is cylindrically symmetric with
respect to the direction of the vector k;. In particular, if the
reagent angular momentum polarization is zero, K, = ¢, = 0,
then the scattering is always cylindrically symmetric. However,
if the reagent angular momentum polarization is nonzero, K, =
0, the terms with ¢, #= 0 yield product distributions which break
the cylindrical symmetry.

The laboratory frame state multipole moments eq 19 are
presented in the form

cK oK,

oy = S, 3

KQ,LK

Y,?Qw ) S (9.9)
(33)
As shown in eq 33, the product angle distribution is expressed

as a sum of scalar products of the spherical tensors Yk (6,¢)
and ZE5(0.9).
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3. Net Angular Momentum Polarization of the Reaction
Products. In this case, the product polarization rank K is
assumed to be nonzero and integration over the recoil angles 6
and ¢ in eq 19 should be performed. This type of polarization
effect was first reported in an atom—molecule reaction by
Rettner and Zare.’ The laboratory-frame product distribution
in eq 19 is in general dependent on three vectors k,, j;, and jc.
Equation 19 then gives rise to

(i) = 21< z NZ Zch( L) o (0.9)
(34)

4. Angular Distribution of the Product Angular Momenta
Polarization. In this case, neither the ranks L nor K, nor K; can
be set equal to zero. The product-frame product distribution in
eq 14 depends on three vectors k;, j;, and jc and the laboratory-
frame product distribution in eq 19 depends on the four vectors
k., j. k, and jc. Such four-vector correlations have been
intensively studied in recent decades in atom—atom and
atom—molecule inelastic and reactive scattering. 20.23.24.29.36 The
total number of the anisotropy coefficients Cqu(Kr,L) in eqs 14
and 19 is in general infinite; however, it can be reduced to a
finite number depending on the conditions of experiment as
discussed above.

IV. Conclusion

We have used quantum mechanics to derive a compact and
completely general theoretical description of the product angular
momentum polarization in a general bimolecular reactive
scattering experiments. The theory allows for both reactants and
both products to possess internal angular momentum, which may
be electronic in origin or may arise from the rotation of the
reactant or product molecules. The theory as presented in eqs
14 and 19 introduces a new anisotropy transforming parameter
c}{qk(Kr,L) which is independent of all angles and relates the
angular momentum polarization of the reactants to that of the
product molecule that is measured. The theory presented in
the paper assumes that the angular momentum polarization of
only one of the reaction products is measured. Further develop-
ment of the theory could take account of the more general
situation where the angular momentum polarization of both
scattering products are measured in coincidence.

The derivation of the theory has exposed a new conservation
rule. This is embodied in eq 14, which shows that the projection
quantum number gy arising from the coupling of reactant angular
momenta, is conserved in the product angular momentum state
multipole pf ’;) This new conservation rule comes about through
the fact that all angular momenta are projected onto the prod-
uct recoil momentum vector.

Expressions are presented (eqs 14 and 19) for the product
angular momentum state multipoles (i.e., their angular momen-
tum polarization) in both a helicity representation, where the
product angular momentum is projected onto the product relative
recoil vector k and in a laboratory frame representation.

The laboratory frame product angular momentum distribution
as expressed in eq 19, or in the form in eq 22, provides a
powerful tool for experimentalist because it permits the deter-
mination from experiment of a set of the angle independent
anisotropy-transforming coefficients c}{c,k(Kr,L) for any inelastic
or reactive collision process irrespectively to the reaction
mechanism.
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As shown above, the coefficients c,’(‘lqk(Kr,L) are also directly
related to the solution of the quantum scattering theory equations
and in principle can be computed from the ab initio theory.
Simultaneous determination of the anisotropy coefficients from
experiment and comparison with their theoretical values will
result in realization of the complete experiment' in the field of
the reaction dynamics. The anisotropy coefficients may alter-
natively be referred to as anisotropy-transforming coefficients
as their role is to map the angular momentum anisotropy present
in the reactants onto that which is observed through an
examination of the reaction products.

Several examples of the use of the formulas to analyze
different experimental situations are discussed. A more detailed
derivation of most of the underlying theory is presented in notes
available in the Supporting Information.
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Appendix A: Scattering Amplitude Expansion

The derivations outlined in this appendix are available in an
extended form in the Supporting Information. The scattering
wave function W, (E k.K) in eq 2 depends on two vectors Kk
and k and can be expanded for all distances R over the set of
internal fragment wavefunctions and spherical top eigenfunctions
or Wigner D matrices. To find an appropriate form of this
expansion, possessing the desired asymptotic boundary condi-
tions, we first consider the expansion of a plane wave moving
in the direction k,:*%%’

"Ry jmy = 4n 2 Z {j(kR) Y, i (K7) Y, (R0 i)
1=0 m=—1
(AD)

where j/(k.R) is a spherical Bessel function and the reagent
internal wave function lv.jim;) is written in the laboratory
reference frame.

Projecting the electronic wave function lv,jm,) in eq Al onto
the direction k and substituting the unitary relationship for the
Wigner rotation matrices,*?

D Dio (9:0,7) Dl (@,07) = 1 (A2)
m’,Q,

applying the Clebsch—Gordan series,*? and proceeding with a
summation over the indices m; and m’, one can transform the
expansion in eq Al into the total angular momentum JM
representation. Then, using the asymptotic expression for the
spherical Bessel function ji(k,R) and proceeding with a sum-
mation over /, one can rewrite the plain-wave expansion in eq
Al in the reactant reference frame as (see Supporting Information)

kR . _ 1
e“ Ry Q) = 2krR ,Z (2 + D[0g o™

(_l)j ],6 1kR] %
D,’V,Q«pﬁy)D o(#.0.91v,j,Q)  (A3)
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The expansion in eq A3 shows that the asymptotic expression
for the total scattering wave function in eq 2 can in general be
written in the form

R—oo .
W (Ek k) - e Ry jQ) +

(2] + 1 kPR .
WT{,Q 0. S D (.0.7) Dio(@.0.915/Q)
IMQ v 2|k

(A4)

where the T matrix is related to the standard S matrix by’

Tijg;w‘,gr = 0g, Q, 5 5 ng 0,72, (A5)

The S matrix is obtained from the analysis of the asymptotic
form of the solution of the coupled differential equations arising
in the scattering problem.*%#”> The expansion (A4) agrees with
the results reported by Pack® and by Nikitin and Umanskii;*’
however, it is generalized to the case of an arbitrary inelastic
or reactive collision.

Comparison of eqs 2 and A4 gives eq 3.

Appendix B: Derivation of Eq 14

The derivations outlined in this appendix are available in an
extended form in the Supporting Information. Substituting eq
3 into eq 5, using the Clebsch—Gordan series, and performing
a summation over the indices M and M’, on can rewrite eq 5 in
the form

T, josjar, j o (k.k) =
4(kAB z 2(21 + DI+

Kio! KB K;
2 zC/—aQ,J'Q;CJ—ﬁQI'Q’D(xa’(qD’ﬁ’V) X

Koo/

DEDHE %

D($.0.0T 0 0T, o (BD)

Partially transforming this generalized cross section so that
the reactant angular momenta are projected onto the laboratory
z-axis, multiplying by the reagent density matrix, averaging over
m; and m; as indicated in eq 6, and then transforming the state
multipoles (eq 7) to the product recoil axis system (see eq 13),
one can rewrite the expression for the generalized cross section
as

D (e ZP”DK 60,6 x

KQr
> Z(21+ DS+ 1)

4(kAB> YA

z EDua((pﬁy)CJ QJ, x

Koo' [
f * £ . '
Dg(6,0,8) f/Q/QDIEQa(Qﬂ 4 V)C Taj0 {Tfj?zju i fjl)S{LjQ}
(B2)

e jokok) =

where ¢, is the projection of the reagent multipole rank K; onto
the product recoil axis k.

The total integral cross section, oy, which enters eq 9 is given
by 0o = (2jc + 1) VXTx[ GV“)Q(k,,k)]) for the case when there
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is no reactant polarization and can be shown to be given by
(see Supporting Information)

2J + 1
kAB ZEZJJ )Z 2 lici)

CD,J
TU/Q v, j. L,

(B3)

where the symbol {jcjnj} means that the corresponding three
quantum numbers obey the triangle rule: ljc — jpl < j < jc +
JD-

Equation B2 is now substituted into eq 8, and the result is
used in eq 9. The summations over the indices Q¢, Q¢, and
Qp are then performed using eq 8.7.3.(12) of ref 42 and
transforming from the spherical angles ¢, 6, & and ¢, ¥, y to
the spherical angles ¢y, ¥ in Figure 1 using the addition theorem
for the Wigner D matrices,*'*> the C fragment product state
multipole can be expressed in the form (see Supporting
Information)

Pl (& k) =

B R PP

vjlj Kol LK vpjp j.Q2 j.Q QQf

(2] + DJQ2K + D(2j + DK, + DL + 1)
V@), + 1)

- : -~ (B4)
(_1)1C+JD(_1)I+K KaLOCJJrQrKa C]Q K—q C]Jg:lqu' x

o4 Jc Jp J €D €D
QK4 K Jje {(Tgs 0 T}

{ 2 Cfé,‘,” K., Lq (ﬂk’wk)PKq }

qr:q1

This product state multipole can be rewritten as

Pk ) =N, D ¢k, (K.L)

K LK,

qu (l?k,(pk) (BS)

where

Ck g (KoL) =

_ N7
1
Ve, jr vpJjp R JIQ T

’

22

7 + Q2K + D(©2j + DK, + DL + 1)
V), + D)

_1Vcting_1yHK Ko~
(= 1= 1Y R R (L o Clieg, X

Q! o  Jic b j CD.J cD
JQ Ko JQK,.qu-v K jC }{(TVfQ,V|__er) T Q’V']Q/} (B6)

and
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R Dpp) = S ;cgzgrqryu(ﬁk,gak)pgfqr (B7)
qr

The “normalization” constant N appearing in eqs B5 and B6
is defined in the main section of the text.

Supporting Information Available: Notes containing a
detailed derivation of most of the formulas in this paper. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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